172 research outputs found

    French birds lag behind climate warming

    Get PDF
    Biodiversity responses to climate warming have been documented through the study of changes in distributions, abundances or phenologies of individual species or in more integrated measures such as species community richness and composition. However, whether these observed population and community changes are occurring fast enough to cope with new climatic conditions remain uncertain and hardly quantifiable. Here, using spatial and temporal trends from the French breeding bird survey, we show that although bird assemblages are strongly responding to climate warming, this response is slower than expected for catching up with the current temperature increase. During the last two decades, French birds have only achieved 54% of the response required to follow temperature increase, and have accumulated, in 18 years, a 97 km delay in their northward shift. We thus developed a framework to measure both the observed and predicted response of species assemblage to climate change, an approach which is flexible enough to be applicable to any taxa with large-scale survey data, using either abundance or distribution data. For example, it can be further used to test if different delays are found across groups or if, for a given group, the delay depends on the land-use contexts

    Gouverner la biodiversité ou comment réussir à échouer

    Get PDF
    Why are we so successful in failing environmental policy? This book sheds light on the conditions of impossibility of governance of biodiversity. The author traces the role of the notion of biodiversity and conservation sciences in the ideological confrontation of the 1980s. Resource management becomes the watchword, sustainable development a rallying cry for peace, and nature a variable adjustment. It is the disappearance of the political content of the biodiversity crisis. He then explains how the biodiversity crisis is deprived of its ecological dimension. The living is considered by the politics of nature as a set of inert entities that lend themselves to sorting, cost-benefit analyzes or substitution. This double erasure, political and ecological, helps to forge the imagination of a global management of biodiversity. If the ecological challenge remains frozen in this double erasure, it can only succeed in failing. How to get out of this deadly and not very stimulating spiral? This book seeks to identify the points to be defended in order to reject this managerial model of the ecological crisis

    Community richness and stability in agricultural landscapes: the importance of surrounding habitats

    Get PDF
    Abstract In this paper, the role played by habitat diversity in the landscape on species richness and on the stability of farmland bird communities was investigated. Species richness was estimated on 374 samples monitored in farmland by the French breeding bird survey during the 2001-2005 period. A capture-recapture approach was used to estimate species richness accounting for the variation in detection probability among species of the 100 most common species detected in farmland. Landscape structure and composition were measured both in farmland and in adjacent habitats. The independent effect of each variable on community richness and stability was further assessed using hierarchical variance partitioning and taking spatial autocorrelation into account. A strong matrix effect was detected: non-cropped land deeply influenced richness and stability of bird assemblages.

    Building relevant ecological indicators with basic data: Species and community specialization indices derived from atlas data

    Get PDF
    A B S T R A C T Species and community specialization have become popular indicators to track the spatial and temporal changes of species and community dynamics during current global changes. However, measuring specialization requires detailed and quantitative descriptions of habitat requirements or resource use, which are difficult to obtain for many species. Here, we propose and test a new method to quantify and map the relative composition of specialist and generalist species in local plots compatible with very basic ecological data, typically used for atlases. We used co-occurrence patterns of 1090 plant species recorded in the French Mediterranean region of Languedoc-Roussillon in a systematic grid of 1225 5 Â 5 km atlas cells to estimate species specialization. We then calculated the averaged specialization of each cell and tested several expected relationships of these indices. In particular, we tested the relationship between species richness and average specialization and the relationship between community specialization and landscape disturbance induced by land use. As expected from studies conducted on fine-scale data, we found that specialist species were those with more restricted distributions and occurring in richer species assemblages. We also found that community specialization was maximized at an intermediate level of landscape disturbance. These results suggest that aggregating specialization at large spatial scales provides useful species and community level indicators. Estimating specialization level with cooccurrence data is a good complementary approach to traditional estimations of diversity indices for conservation and landscape planning

    Phylogenetic diversity and nature conservation: where are we?

    Get PDF
    To date, there is little evidence that phylogenetic diversity has contributed to nature conservation. Here, we discuss the scientific justification of using phylogenetic diversity in conservation and the reasons for its neglect. We show that, apart from valuing the rarity and richness aspect, commonly quoted justifications based on the usage of phylogenetic diversity as a proxy for functional diversity or evolutionary potential are still based on uncertainties. We discuss how a missing guideline through the variety of phylogenetic diversity metrics and their relevance for conservation might be responsible for the hesitation to include phylogenetic diversity in conservation practice. We outline research routes that can help to ease uncertainties and bridge gaps between research and conservation with respect to phylogenetic diversity. A promising but yet ambiguous additional biodiversity component for conservation More than two decades ago, Richard Vane-Wright et al. However, despite the increasing number of studies, the scientific proof of the added value of phylogenetic diversity for nature conservation remains weak. We believe that this is one of the main reasons why phylogenetic diversity is largely neglected in conservation practice In addition to the more general concept of conserving all components of biodiversity because of their intrinsic values, we identified four main conservation approaches that are commonly proposed as central justifications for the conservation of phylogenetic diversity: (i) the rarity aspect; (ii) the richness aspect; (iii) phylogenetic diversity as a proxy for functional diversity; and (iv) phylogenetic diversity as a proxy for evolutionary potential. Along these lines, we emphasize that a sound conceptual justification for the added value of phylogenetic diversity is often missing. We finally highlight desirable research avenues to increase our knowledge of the role of phylogenetic diversity and of how it could potentially improve conservation in the future. Phylogenetic diversity as an intrinsic biodiversity component One general agreement is to conserve all components of biodiversit

    Evaluation of floristic diversity in urban areas as a basis for habitat management

    Get PDF
    International audienceQuestions: How can floristic diversity be evaluated in conser‐vation plans to identify sites of highest interest for biodiversity? What are the mechanisms influencing the distribution of species in human‐dominated environments? What are the best criteria to identify sites where active urban management is most likely to enhance floristic diversity?Location: The Hauts‐de‐Seine district bordering Paris, France.Methods: We described the floristic diversity in one of the most urbanized French districts through the inventory of ca. 1000 sites located in 23 habitats. We built a new index of floristic interest (IFI), integrating information on richness, indigeneity, typicality and rarity of species, to identify sites and habitats of highest interest for conservation. Finally, we explored the relationship between site IFI and land use patterns (LUP).Results: We observed a total of 626 vascular plant species. Habitats with highest IFI were typically situated in seminatural environments or environments with moderate human impact. We also showed that neighbouring (urban) structures had a significant influence on the floristic interest of sites: for example, the presence of collective dwellings around a site had a strong negative impact on IFI.Conclusions: Our approach can be used to optimize management in urban zones; we illustrate such possibilities by defining a ‘Site Potential Value’, which was then compared with the observed IFI, to identify areas (e.g. river banks) where better management could improve the district's biodiversity

    Large-Scale Changes in Community Composition: Determining Land Use and Climate Change Signals

    Get PDF
    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact—land use and climate change—are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant

    Are Killer Bees Good for Coffee? The Contribution of a Paper\u27s Title and Other Factors to Its Future Citations

    Get PDF
    How can the title of a paper affect its subsequent number of citations? We compared the citation rate of 5941 papers published in the journal Biological Conservation from 1968 to 2012 in relation to: paper length; title length; number of authors; paper age; presence of punctuation (colons, commas or question marks); geographic and taxonomic breadth; the word ‘method’; and the type of manuscript (article, review). The total number of citations increased in more recently published papers and thus we corrected citation rate (average number of citations per year since publication) by publication age. As expected, review papers had, on average, twice the number of citations compared to other types of articles. Papers with the greatest geographic or taxonomic breadth were cited up to twice as frequently as narrowly focused papers. Titles phrased as questions, shorter titles, and papers with more authors had slightly higher numbers of citations. However, overall, we found that the included parameters explained only 12% of the variability in citation rate. This suggests that finding a good title is necessary, but that other factors are more important to construct a well-cited paper. We suggest that to become highly cited, a primary requirement is that papers need to advance the science significantly and be useful to readers
    corecore